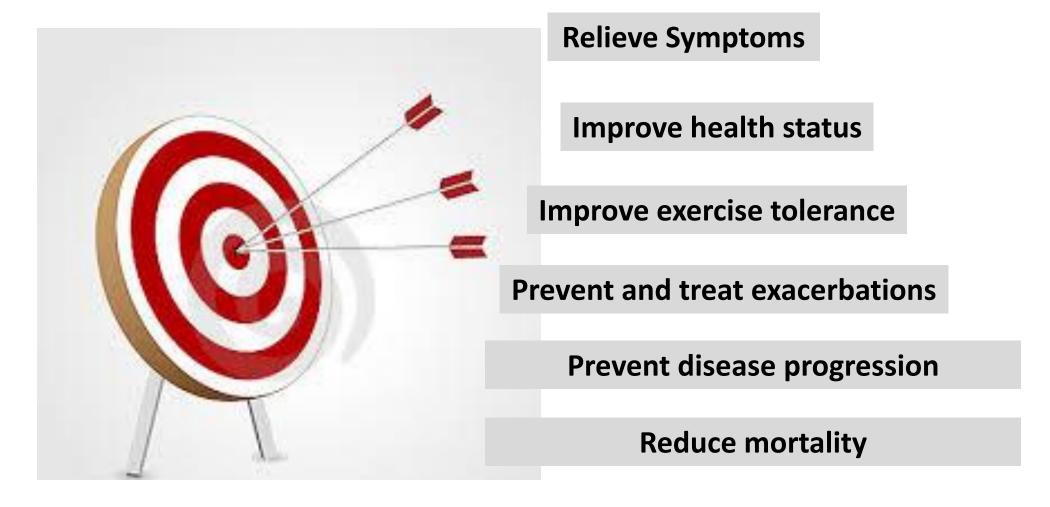
EXCELINPULMONOLOGY the advanced training program in Respiratory Medicine

COPD@ATHENS

Management of stable and exacerbated COPD

Andriana I Papaioannou Assist. Professor National and Kapodistrian University of Athens, School of Medicine 1st Respiratory Medicine Department, Sotiria Chest Hospital, Athens Greece

Disclosures


Speaker and Consulting fees from

- Novartis
- ELPEN
- Menarini
- AstraZeneca
- GlaxoSmithKline
- Chiesi
- Boehringer Ingelheim
- Specialty Therapeutics
- Guidotti

COPD definition GOLD 2023

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous lung condition characterized by chronic respiratory symptoms (dyspnea, cough, sputum production and/or exacerbations) due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction.

Goals of COPD treatment

Therapeutic interventions for COPD

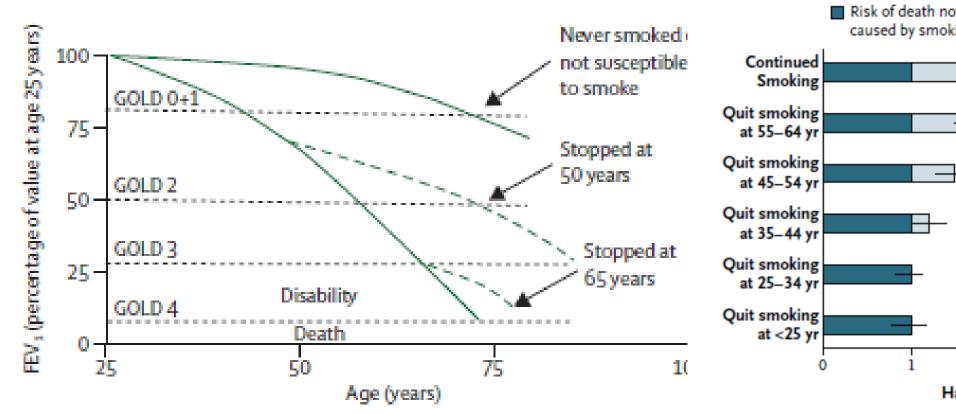
Non pharmacological interventions

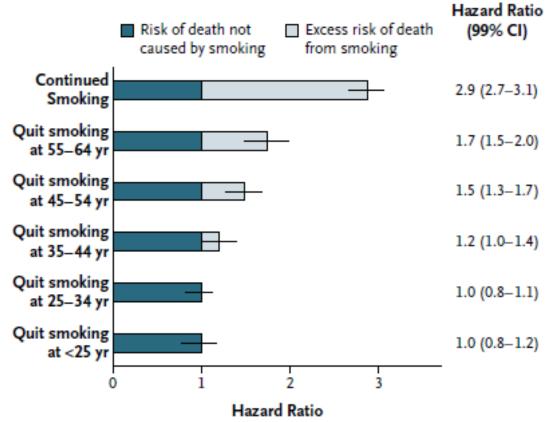
√ Smoking cessation

✓ Rehabilitation

✓ Vaccination

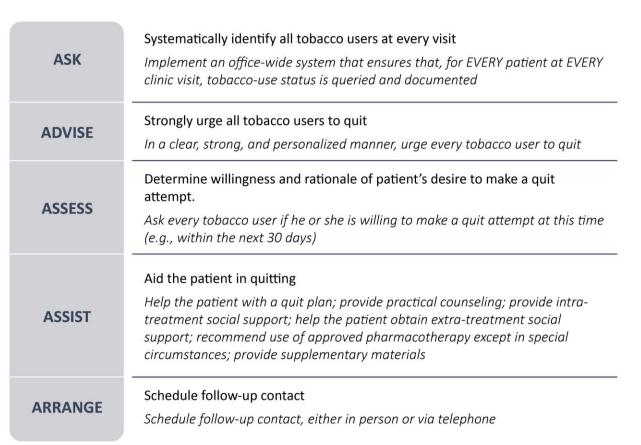
- ✓ Oxygen therapy, NIV,LVRS/LVRB,
- nutritional support
- ✓ Education




Pharmacological interventions

✓ Medications for COPD

Smoking cessation- the first intervention which alters disease course



Tonnesen P et al ERJ 2007 Jha P et al Nature reviews Cancer 2009 Rigotti NA et al Lancet Resp Med 2013

Therapeutic interventions for smoking cessation

Brief Strategies to Help the Patient Willing to Quit

Table 3.1

- Contraindications: recent myocardial infarction or stroke (treatment can be started after 2w)
- Medications
 - Bupropion, nortriptyline

The combination of pharmacotherapy and behavioral support increases smoking cessation rates

Vaping is not suggested as an intervention for smoking cessation!

Pulmonary Rehabilitation

- Decreased exercise capacity in COPD patients is related to
 - Low HRQoL
 - Depression
 - Increased exacerbation Frequency
 - Increased mortality
- Pulmonary rehabilitation programs include the following
 - exercise training to increase in muscle strength
 - Respiratory physiotherapy- breathing patterns
 - Nutritional support
 - Psychological support (cognitive behavioral psychotherapy)
 - Education

Spruit M A et al AJRCCM 2014

Pulmonary Rehabilitation

1 rehabilitation/

shnke (14/12)

roosters (24/19)

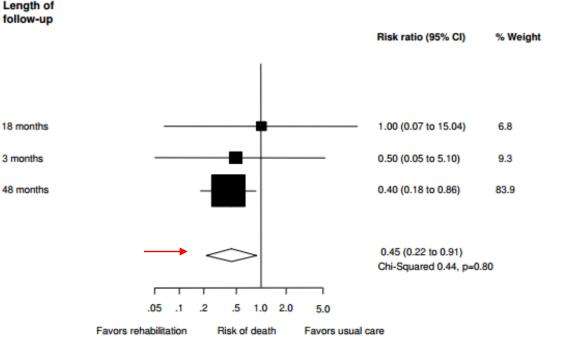
verall (58/52)

an (20/21)

sual care group)

HRQoL

Analysis 4.5. Comparison 4 Rehabilitation versus usual care (sensitivity analysis by allocation concealment and incomplete outcome), Outcome 5 QoL - Low Risk SGRQ (Total).


Review: Pulmonary rehabilitation for chronic obstructive pulmonary disease

Comparisor: 4 Rehabilitation versus usual care (sensitivity analysis by allocation concealment and incomplete outcome)

Outcome: 5 QoL - Low Risk SGRQ (Total)

Study or subgroup	Pulmonary rehab		Usual care		Differ	Mean rence	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Rando	m,95% CI		IV,Random,95% CI
Boxall 2005	23	-5.8 (11.8)	23	-1.4 (13.3)		-	10.2 %	-4.40 [-11.67, 2.87]
Engström 1999	26	0.3 (17.3)	24	0.5 (16.2)	-	_	7.1 %	-0.20 [-9.49, 9.09]
Griffiths 2000	93	-7.1 (15.5)	91	1.3 (11.7)			19.8 %	-8.40 [-12.36, -4.44]
Gurgun 2013	30	-6.45 (8.0638)	16	-0.18 (0.7)			243 %	-6.27 [-9.18, -3.36]
Karapolat 2007	26	-168 (15.2)	19	-3.7 (17.3)			66%	-13.10 [-22.83, -3.37]
Theander 2009	12	7.6 (10.8)	14	2.6 (12.2)	+	•	7.7 %	5.00 [-3.84, 13.84]
Van Wetering 2010	87	-39 (10.26)	88	0.3 (9.38)	-		243 %	-4.20 [-7.11, -1.29]
Total (95% CI)	297		275		→ -		100.0 %	-5.15 [-7.95, -2.36]
Heterogeneity: Tau ² =	6.17; Chi ² = 12.19, c	f = 6 (P = 0.06);	I ² =51%					
Test for overall effect: 2	Z = 361 (P = 0.0003	0)						
Test for subgroup differ	rences: Not applicable	e						
					لــــــــــــــــــــــــــــــــــــــ			
				-	20 -10 0	10	20	
				Favours puln	nonary rehab	Favours usu	al care	

Mortality

- ✓ Symptom improvement
- √ Improvement of HRQoL
- ✓ Decrease of mortality

McCarthy B et al Cochrane Database Syst Rev 2015 Puhan MA et al Resp Res 2005

Vaccination for Stable COPD

Vaccination for Stable COPD

Table 3.2

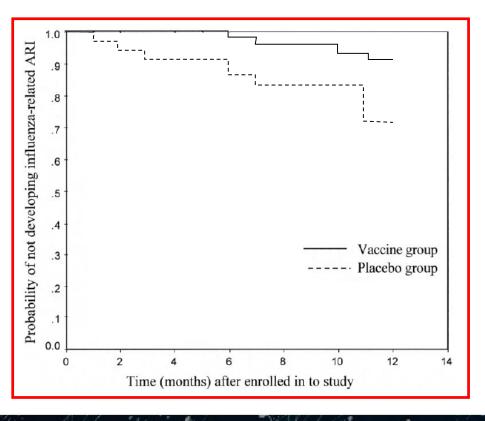
Influenza

- Influenza vaccination is recommended in people with COPD (Evidence B)
- The WHO and CDC recommends SARS-CoV-2 (COVID-19) vaccination for people with COPD (Evidence B)

 SARS-Cov-2
- The CDC recommends one dose of 20-valent pneumococcal conjugate vaccine (PCV20); or one
 dose of 15-valent pneumococcal conjugate vaccine (PCV15) followed by 23-valent pneumococcal
 polysaccharide vaccine (PPSV23) in people with COPD (Evidence B) S pneumoniae
- Pneumococcal vaccination has been shown to reduce the incidence of community-acquired pneumonia and exacerbations in people with COPD (Evidence B) S pneumoniae
- The CDC recommends Tdap (dTaP/dTPa) vaccination to protect against pertussis (whooping cough) for people with COPD that were not vaccinated in adolescence (Evidence B), and Zoster vaccine to protect against shingles for people with COPD over 50 years (Evidence B)

dTaP, V-ZV

The effect of influenza vaccination in COPD exacerbations

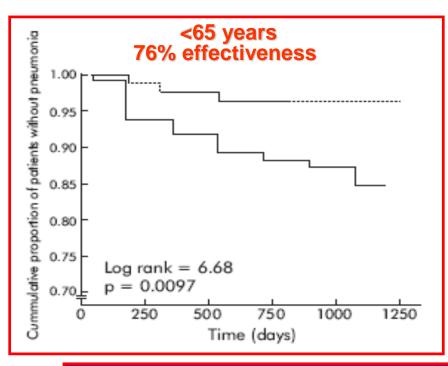


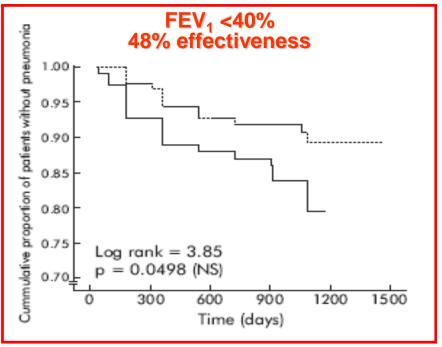
 COPD patients (especially those with CV comorbidities) are at increased risk of complications when infected with the influenza virus

Crohskopf LA et al CDC recommendations 2014

Seemungal T, Am J Respir Crit Care Med 2001

• Influenza A & B are responsible for 5.4% of exacerbations

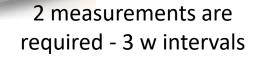

76% Decrease of AECOPD related with (IRR = 0.24)


- Best time of immunization September-November
- Protection lasts for one period.
- Annual vaccination is required

Bekkat-Berkani R, et al. BMC Pulm Med. 2017

Pneumococal vaccination and exacerbations

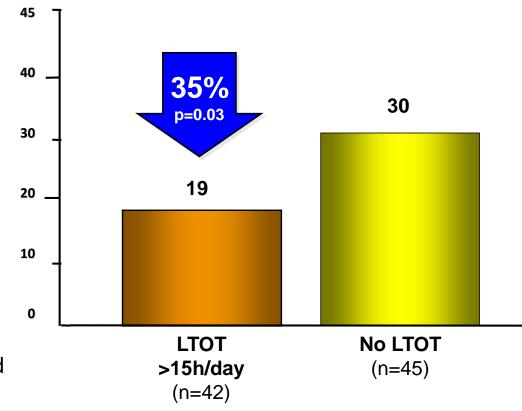
91% effectiveness in COPD patients <65 years with FEV₁ <40%


Alfageme I, Thorax 2006

Indications:

Stable COPD with

- PaO₂ ≤55mmHg or
- **❖** PaO₂ ≤60mmHg + AND
 - Peripheral oedema
 - Polycythemia (Ht ≥55) or
 - Pulmonary hypertension



GOLD 2023 Hardinge M et al Thorax 2015

Patients which have been prescribed LTOT after a AECOPD should be re-evaluated after 60-90 days

Medical Research Council Working Party, Lancet 1981

NIV in stable COPD

• It can be prescribed in patients in which the acute cause of AECOPD has been resolved

but

- They cannot be weaned from NIV for 8 consecutive days (due to clinical deterioration, increase in PaCO2, respiratory acidosis)
- Recurring episodes of acute respiratory failure without precise cause
- In COPD patients with concomitant OSA

The benefits of NIV in stable COPD

Survival

NIPPV No NIPPV **Odds Ratio** Favors Favors Study Study Design **Events/Patients Events/Patients** (95% CI) No NIPPV Weight, % BPAP vs no device Casanova et al, 19 2010 RCT 4/26 4/26 3.5 1.00 (0.22-4.51) Clini et al. 23 2002 8/47 RCT 8/43 1.11 (0.38-3.28) 6.0 Duiverman et al, 26 2011 RCT 5/37 5/35 0.94 (0.25-3.57) 4.3 Köhnlein et al. 36 2014 10.2 RCT 12/102 31/93 0.27 (0.13-0.56) McEvoy et al, 38 2009 RCT 40/72 46/72 0.71 (0.36-1.38) 11.5 Murphy et al, 6 2017 RCT 0.82 (0.37-1.82) 9.3 16/57 19/59 Struik et al,7 2014 RCT 30/101 29/100 1.03 (0.56-1.90) 12.7 Zhou et al.46 2017 RCT 0/57 1/58 0.33 (0.01-8.35) 0.9 Budweiser et al, 18 2007 24/99 18/41 0.41 (0.19-0.88) 9.7 Observational Clini et al. 22 1996 3/17 2.9 Observational 4/17 1.44 (0.27-7.68) Clini et al, 21 1998 13/28 11/21 0.79 (0.25-2.45) 5.6 Observational Galli et al. 32 2014 8/78 17/88 7.9 Observational 0.48 (0.19-1.18) Tsolaki et al,44 2008 2/27 2/22 0.80 (0.10-6.19) 2.0 Observational Subtotal ($I^2 = 5.9\%$; P = .39) 86.4 0.66 (0.50-0.87) HMV vs no device Heinemann et al,35 2011 6/39 20/43 0.21 (0.07-0.60) -6.2 Observational Paone et al, 42 2014 Observational 13/48 10/45 1.30 (0.50-3.36) 7.3 Subtotal ($I^2 = 84.3\%$; P = .01) 0.56 (0.29-1.08) 13.6 NIPPV (BPAP and HMV) vs no device 100.0 Overall ($I^2 = 27.3\%$; P = .16) 0.65 (0.48-0.88) 0.1 10 Intubation Odds Ratio (95% CI)

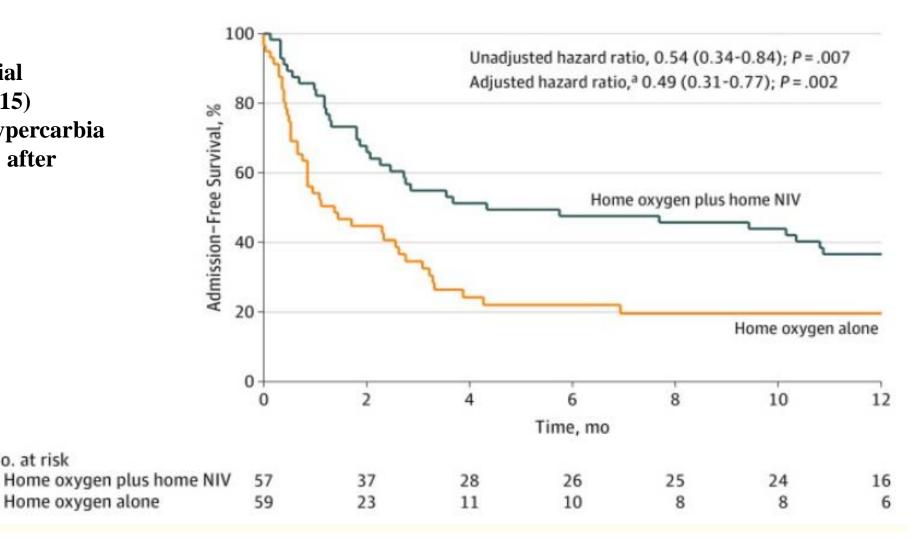
		NIPPV	No NIPPV	Odds Ratio	Favors	Favors	
BPAP vs No Device	Study Design	Events/Patients	Events/Patients	(95% CI)	NIPPV	No NIPPV	Weight, %
Casanova et al, 19 2010	RCT	1/26	2/26	0.48 (0.04-5.65)			13.4
Galli et al, ³² 2014	Observational	5/78	16/88	0.31 (0.11-0.89)			73.2
Tsolaki et al,44 2008	Observational	1/27	2/22	0.38 (0.03-4.55)			13.4
Subtotal ($I^2 = 0.0\%$; $P = .94$)				0.34 (0.14-0.83)			100.0
				[· · · ·			η
				0.01	0.1	1 1	10
					Odds Ratio (95%		

Hospital readmission

		No. of Patients		Rate Ratio	Favors	Favors	
Study	Study Design	NIPPV	No NIPPV	(95% CI)	NIPPV	No NIPPV	Weight, %
BPAP vs no device							
Casanova et al, 19 2010	RCT	26	26	0.80 (0.21-2.98)			6.3
Clini et al, ²³ 2002	RCT	23	24	0.64 (0.37-1.11)	-		17.3
McEvoy et al, ³⁸ 2009	RCT	72	72	1.04 (0.98-1.11)			26.8
Clini et al, ²² 1996	Observational	17	17	1.13 (0.57-2.27)	_	-	14.1
Tsolaki et al,44 2008	Observational	27	22	0.59 (0.29-1.21)	_		13.6
Subtotal ($I^2 = 27.2\%$; $P = .240$)				0.91 (0.71-1.17)		>	78.1
HMV vs no device							
Paone et al, ⁴² 2014	Observational	48	45	0.50 (0.35-0.71)	-		21.9
NIPPV (BPAP and HMV) vs no device							
Overall ($I^2 = 76.6\%$; $P = .001$)				0.75 (0.52-1.10)		-	100.0
				0.1		1	10
				-	Rate Ratio	o (95% CI)	

Health Related Quality of Life

		No. of Patients No NIPPV NIPPV							Favors No NIPPV	Weight,	
BPAP vs No Device	Study Design			Quality of Life Scale	Standardized Mean Difference (95% CI)		Favors NIPPV				
Zhou et al, ⁴⁶ 2017	RCT	57	58	COPD assessment test	0.31 (-0.06 to 0.68)						13.24
Duiverman et al, ²⁶ 2011	RCT	37	35	Chronic Respiratory Disease Questionnaire	-0.04 (-0.27 to 0.20)			-	1		16.88
Garrod et al,33 2000	RCT	23	22	Chronic Respiratory Disease Questionnaire	0.62 (0.02 to 1.21)					_	8.26
Márquez-Martín et al, ³⁷ 2014	RCT	15	15	Chronic Respiratory Disease Questionnaire	-0.24 (-0.96 to 0.48)						6.53
Struik et al, ⁷ 2014	RCT	101	100	Chronic Respiratory Disease Questionnaire	0.00 (-0.28 to 0.28)			F	-		15.74
Köhnlein et al, ³⁶ 2014	RCT	102	93	St George's Respiratory Questionnaire	0.32 (0.04 to 0.61)						15.56
Murphy et al, ⁶ 2017	RCT	57	59	St George's Respiratory Questionnaire	-0.07 (-0.43 to 0.29)			-	-		13.33
Oscroft et al, ⁴¹ 2010	RCT	5	5	St George's Respiratory Questionnaire	-1.14 (-2.50 to 0.22)	4					2.36
Tsolaki et al,44 2008	Observational	27	22	SF-36 physical component summary	0.97 (0.36 to 1.58)					_	8.11
Overall (I ² = 61.7%; P = .007)					0.16 (-0.06 to 0.38)			4			100.0
						-2	-1	0)	1	2
									zed Mea e (95% C		


Wilson EM et al JAMA 2020

The benefits of NIV in stable COPD

- Randomized controlled trial
- 13 centers in UK (2010-2015)
- Patients with persistent hypercarbia $(PaCO_2 > 53 \text{ mm Hg}) 2-4\text{w} \text{ after}$ resolution of acidosis

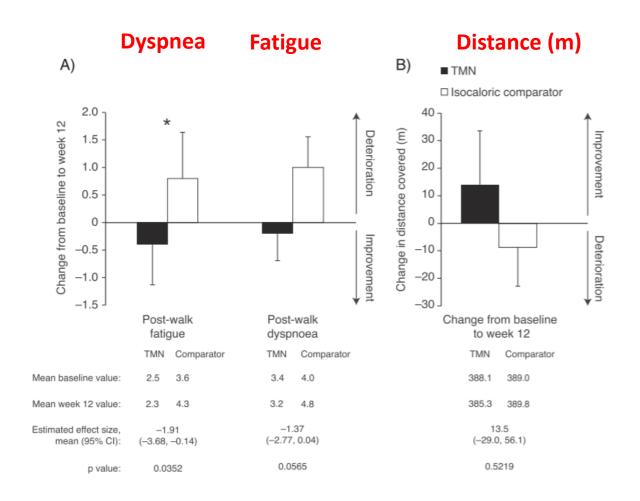
No. at risk

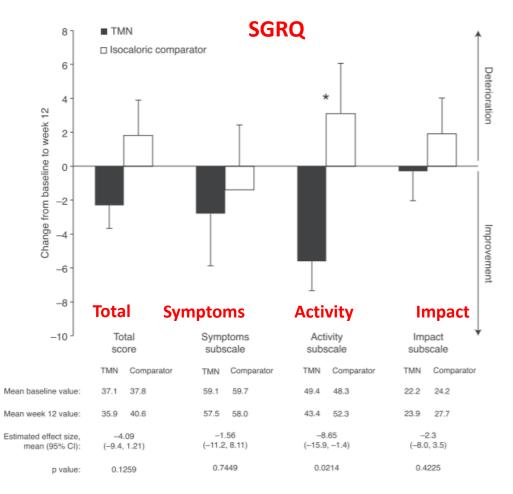
Home oxygen alone

Murphy PB et al JAMA 2017

Nutritional support

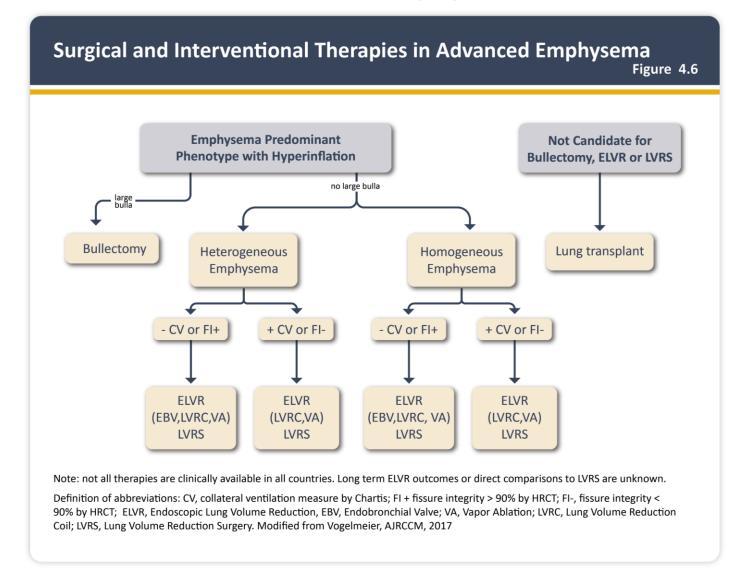
• Important for cachectic patients



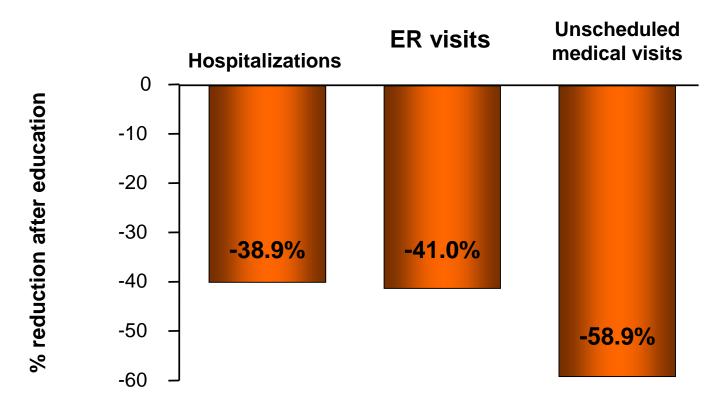

First author [ref.]	Difference mean±se	Experimental total	Control total	Weight %	Std mean differenc IV, random (95% CI	
Undernourished						
Sugawara [74]#	0.8329±0.3713	17	15	15.5	0.83 (0.11-1.56)	
Schols [73]¶	1.0495±0.2735	39	25	17.9	1.05 (0.51-1.59)	_ -
HOOGENDOORN [75], VAN WETERING [76-89]#	1.5066±0.4282	15	14	14.1	1.51 (0.67-2.35)	
Subtotal (95% CI)		71	54	47.5	1.08 (0.70-1.47)	
Heterogeneity: Tau-squared 0.00; Chi-	squared 1.45, d	f 2 (p=0.48); l ² =	0%			
Test for overall effect: Z=5.54 (p<0.000	101)					
Adequately nourished						
Schols [73]	0.2651±0.239	33	38	18.7	0.27 (-0.20-0.73)	 -
Subtotal (95% CI)		33	38	18.7	0.27 (-0.20-0.73)	
Heterogeneity: not applicable						
Test for overall effect: Z=1.11 (p<0.27)						
Combined population of undernourish	ed and nourishe	ed patients				
STEINER [84-86]	-0.3712±0.2642	25	35	18.1	-0.37 (-0.89-0.15)	ı
Sugawara [87, 88]	0.3532±0.3641	17	14	15.7	0.35 (-0.36-1.07)	- •
Subtotal (95% CI)		42	49	33.8	-0.05 (-0.76-0.65)	
Heterogeneity: Tau-squared 0.16; Chi-	squared 2.59, d	f 1 (p=0.11); l ² =	61%			\top
Test for overall effect: Z=0.15 (p<0.88)						
Total (95% CI)		146	141	100.0	0.57 (0.04-1.09)	
Heterogeneity: Tau-squared 0.33; Chi-	-squared 22.28.	df 5 (p=0.0005);	I2=78%		_	
Test for overall effect: Z=2.11 (p=0.03)						-2 -1 0 1 2
Test for subgroup differences: Chi-squ		(p=0.003); l2=8	2.3%			Control better Supplement better

FFMI

Schols AM et al ERJ 2014


Nutritional support

Calder PC et al J Cachexia Sarcopenia Muscle 2018


Interventional therapy in stable COPD

Education

- 1. Information about smoking cessation
- 2. Correct use of device
- 3. Recognition of AECOPD
- 4. Action plans to relieve symptoms and AECOPD
- 5. Education on when to seek medical help

GOLD 2023

n=191 COPD pts with ≥1 AECOPD in the past year Education and self-management plan vs. usual care

Bourbeau J, Arch Intern Med 2003

Initial Pharmacological Treatment

Figure 4.2

≥ 2 moderate exacerbations or ≥ 1 leading to hospitalization

GROUP E

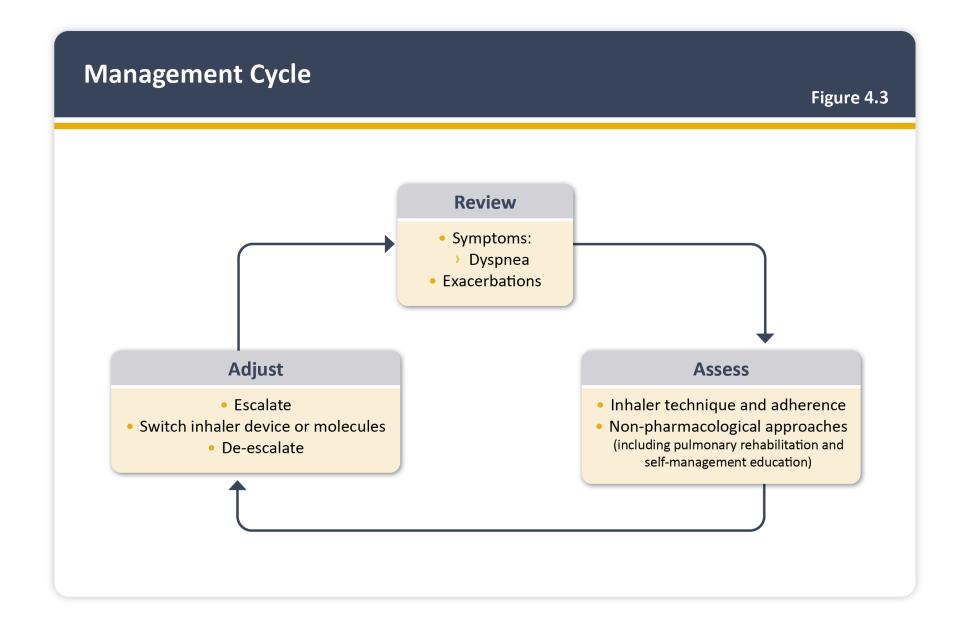
LABA + LAMA*

consider LABA+LAMA+ICS* if blood eos ≥ 300

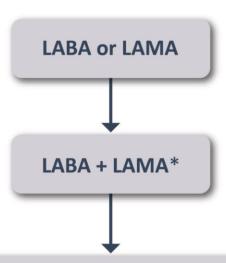
O or 1 moderate exacerbations (not leading to hospital admission)

GROUP A

A bronchodilator

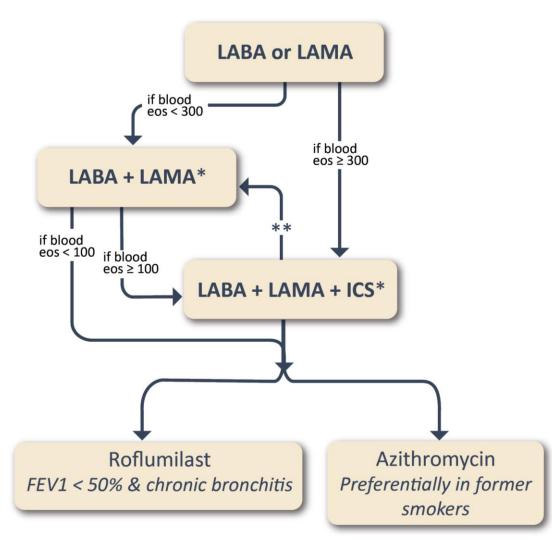

GROUP B

LABA + LAMA*

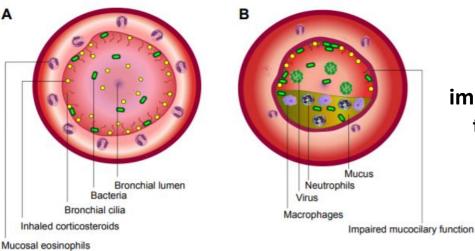

mMRC 0-1, CAT < 10

 $mMRC \ge 2$, $CAT \ge 10$

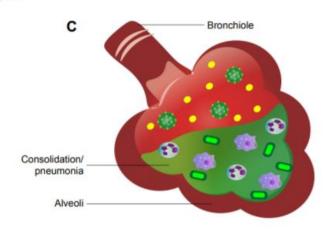
*single inhaler therapy may be more convenient and effective than multiple inhalers Exacerbations refers to the number of exacerbations per year



DYSPNEA

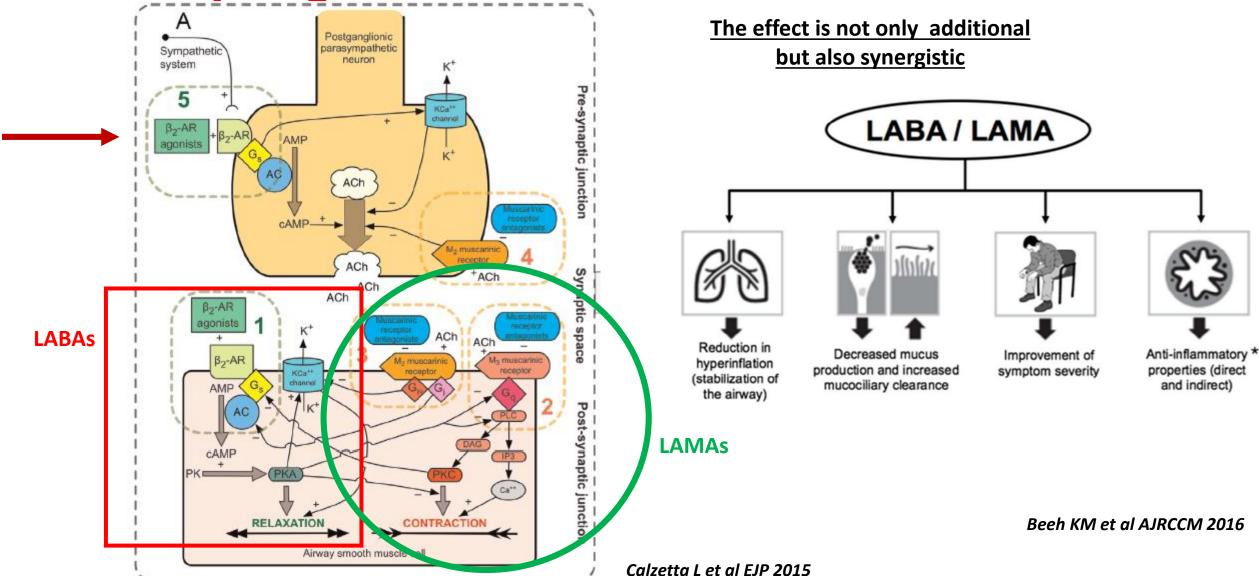

- Consider switching inhaler device or molecules
- Implement or escalate non-pharmacologic treatment(s)
- Investigate (and treat) other causes of dyspnea

EXACERBATIONS



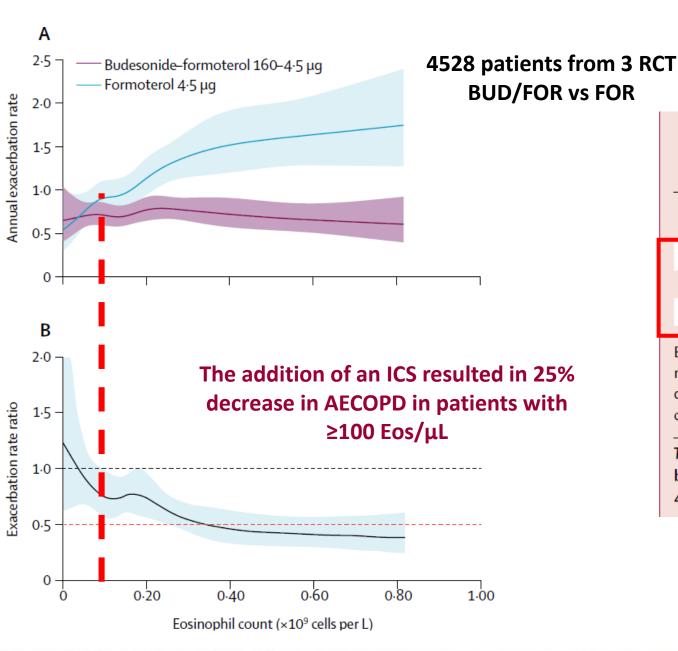
The action of inhaled medication in COPD

ICS: Decrease of AECOPD due to decrease of eosinophilic inflammation


LABA/LAMA: Symptom improvement and decrease of AECOPD through increases in the bronchial diameter

LAMA: anti-inflammatory activity, inhibition of inflammatory cytokine production and decrease of mucus production

Lipworth B et al Int J COPD 2021


Synergistic effect of LABAs and LAMAs

ICS in COPD LABA/ICS vs. LABA: AECOPD

				Rate ratio		Rate ratio
Study or Subgroup	log[Rate ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.1.1 Fluticasone/sa	lmeterol					
TRISTAN	-0.07	0.0734	13.4%	0.93 [0.81, 1.08]	2003	+
Kardos 2007	-0.4308	0.073	13.5%	0.65 [0.56, 0.75]	2004	-
TORCH	-0.13	0.044	16.0%	0.88 [0.81, 0.96]	2004	•
Ferguson 2008	-0.3638	0.091	11.8%	0.70 [0.58, 0.83]	2008	+
Anzueto 2009	-0.3624	0.091	11.8%	0.70 [0.58, 0.83]	2009	*
Subtotal (95% CI)			66.6%	HR 0.77 (0.66 t	n 0 89)	♦
Heterogeneity: Tau2:	= 0.02; Chi ^z = 21.6	4, df = 4	(P = 0.00)	02,,. 02.0	0.037	
Test for overall effect	Z = 3.56 (P = 0.00)	004)				
1.1.2 Budesonide/for	rmoterol					
Szafranski 2003	-0.26	0.125	9.1%	0.77 [0.60, 0.99]	2003	-
Calverley 2003	-0.294	0.12	9.4%	0.75 [0.59, 0.94]	2003	
Tashkin 2008	-0.2357	0.15	7.5%	0.79 [0.59, 1.06]	2008	
Rennard 2009	-0.4943	0.15	7.5%	0.61 [0.45, 0.82]	2009	· ·
Subtotal (95% CI)			33.4%	HR 0.73 (0.64 to	o 0.83)	•
Heterogeneity: Tau2:	= 0.00; Chi² = 1.93	, df = 3 (F	P = 0.59);	² :	<i>-</i> 0.00 ₁	
Test for overall effect	:: Z = 4.66 (P < 0.00	0001)				
				UD 0 76 /0 60 I	0.04	
Total (95% CI)			100.0%	HR 0.76 (0.68 t	0 0.84)	•
Heterogeneity: Tau ² :	= 0.02; Chi² = 25.1	8, df = 8	(P = 0.00)	1); I² = 68%	_	0.05 0.2 1 5 20
Test for overall effect	•					ours combination Favours LABA
Test for subgroup dit	fferences: Chi² = 0	.24, df=	1 (P = 0.8)	i3), I² = 0%		care community i areard Diff

Nannini LJ, Cochrane Library 2012

	Mean peripheral blood eosinophil count (× 10° cells per L)
Non-significant 25% increase to 22% reduction (rate ratio 0.78–1.25)	0.01-0.09
25% reduction* (rate ratio 0.75)	0.10-0.19
26–50% reduction (rate ratio 0·50–0·74)	0.20-0.34
51–60% reduction (rate ratio 0·40–0·49)	0.35-0.63

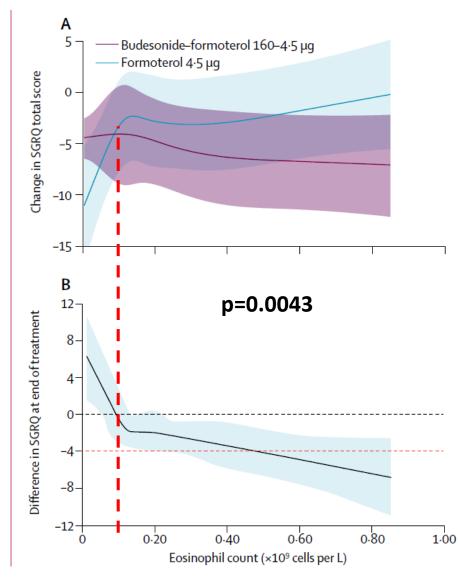
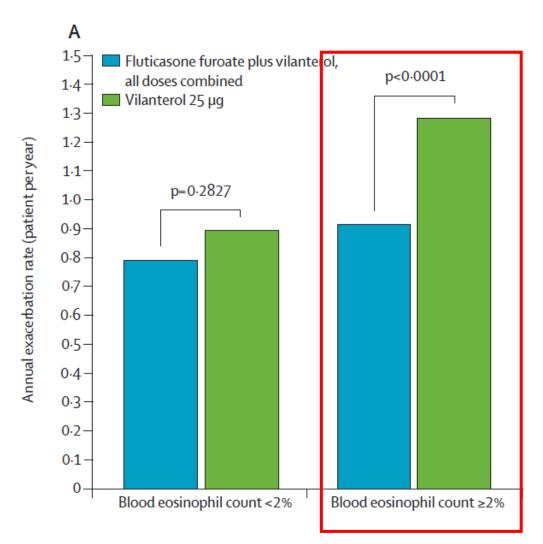
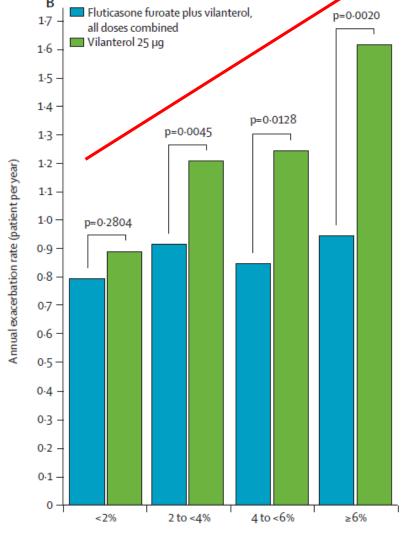

Budesonide–formoterol 160–4·5 μg was administered by pressurised metered-dose inhaler (two inhalations). Formoterol 4·5 μg was administered by dry powder inhaler (two inhalations). *Mean reduction for $0\cdot10\times10^{9}$ – $0\cdot19\times10^{9}$ cells per L.

Table 2: Exacerbation rate reduction treatment effect of budesonide-formoterol 160–4·5 μg as compared with formoterol 4·5 μg , according to eosinophil count

Bafadhel M et al Lancet Resp Med 2018

4528 patients from 3 RCT BUD/FOR vs FOR

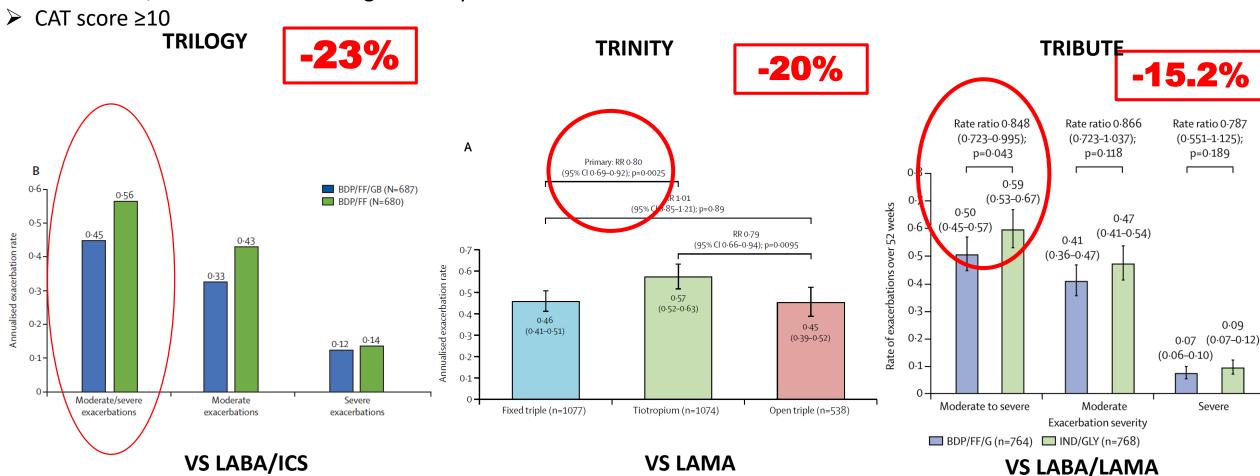




Bafadhel M et al Lancet Resp Med 2018

Patients with blood Eos ≥2% had lower risk for AECOPD when treated with

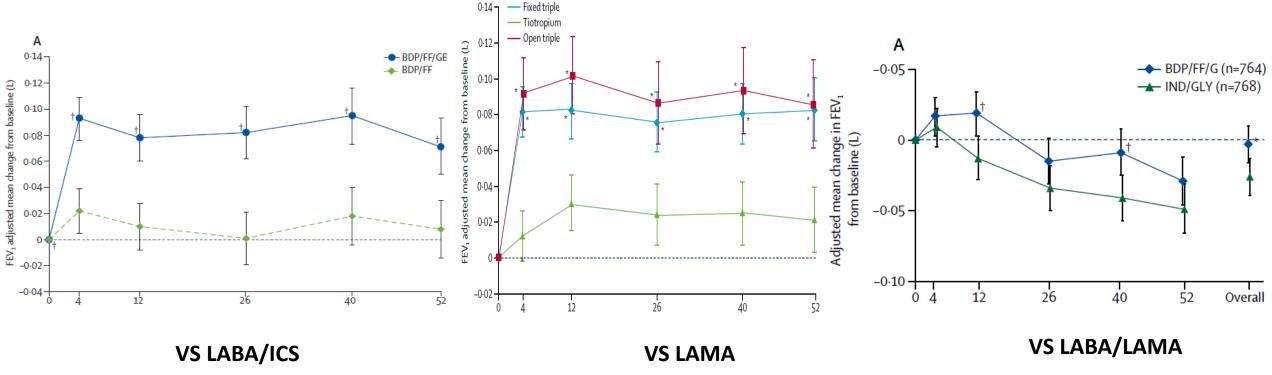
FF/Vi vs Vi



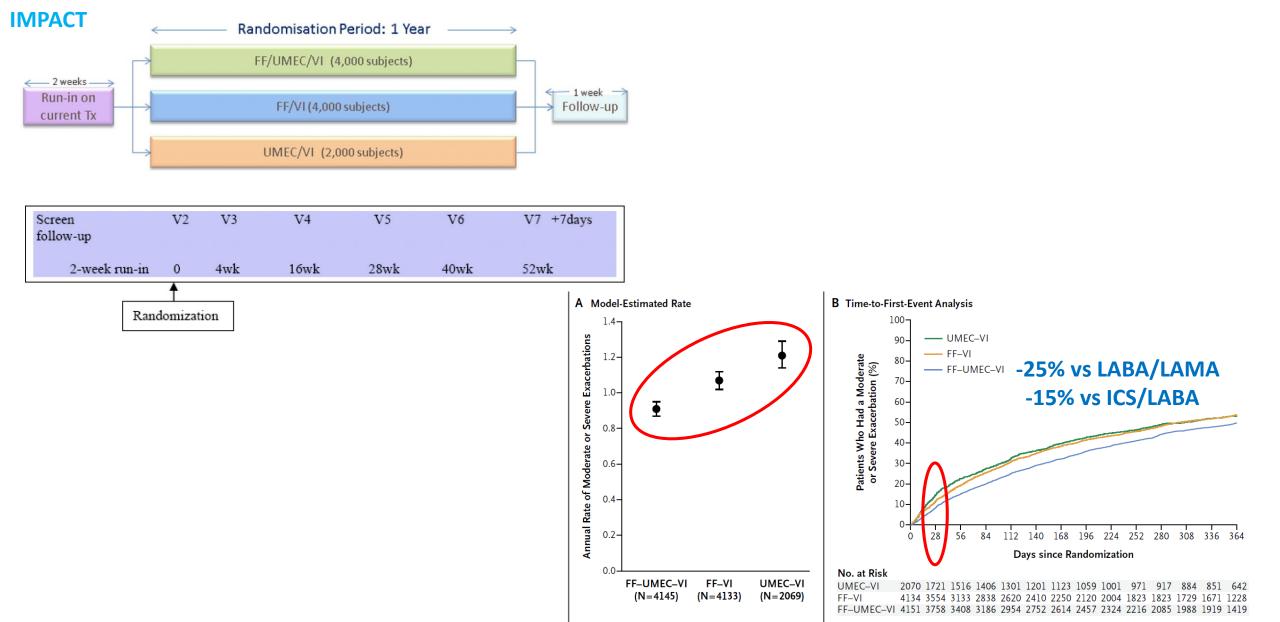
Blood eosinophil count group Pascoe et al Lancet Resp Med 2015

Triple therapy and decrease of AECOPD

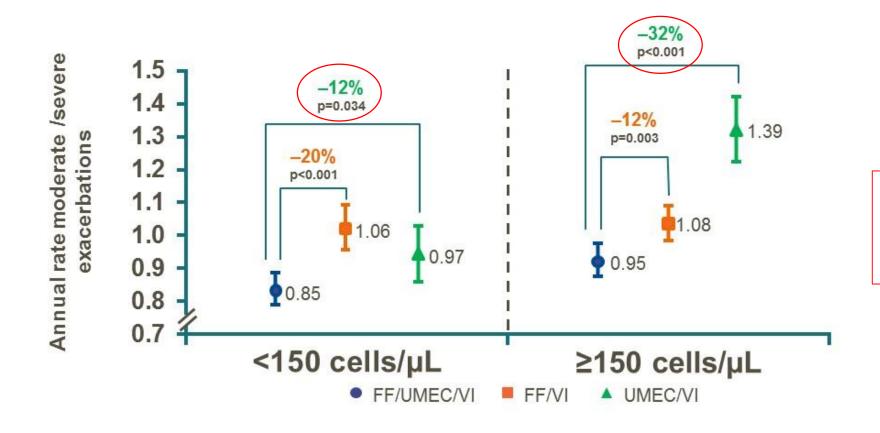
- \triangleright FEV₁< 50% pred
- ➤ 1 moderate/severe AECOPD during the last year


COPD@ATHENS

0.09

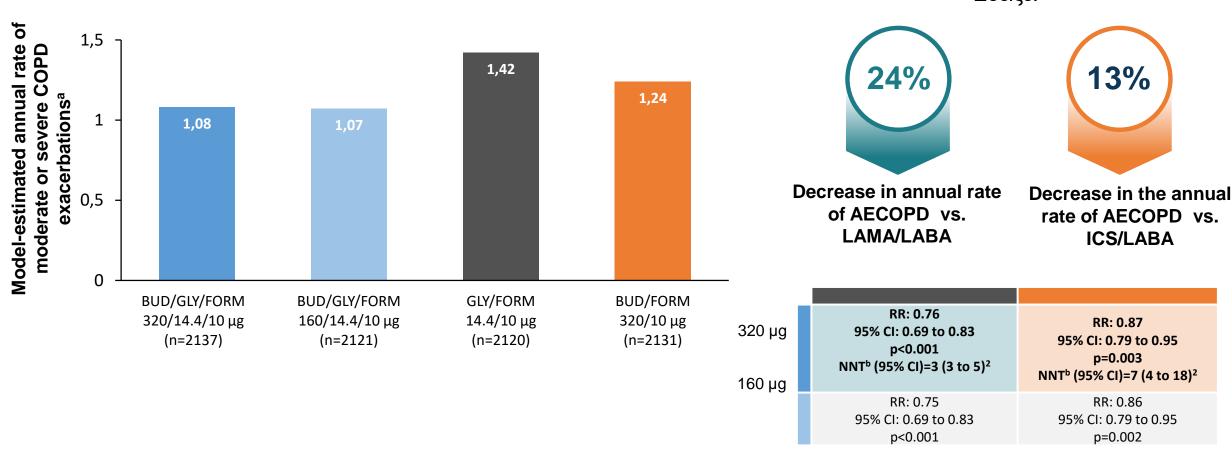

Singh D, et al. Lancet 2016 Vestbo J, et al. Lancet 2017 Papi A, et al. Lancet 2018

Triple therapy and respiratory function improvement


TRILOGY TRINITY TRIBUTE

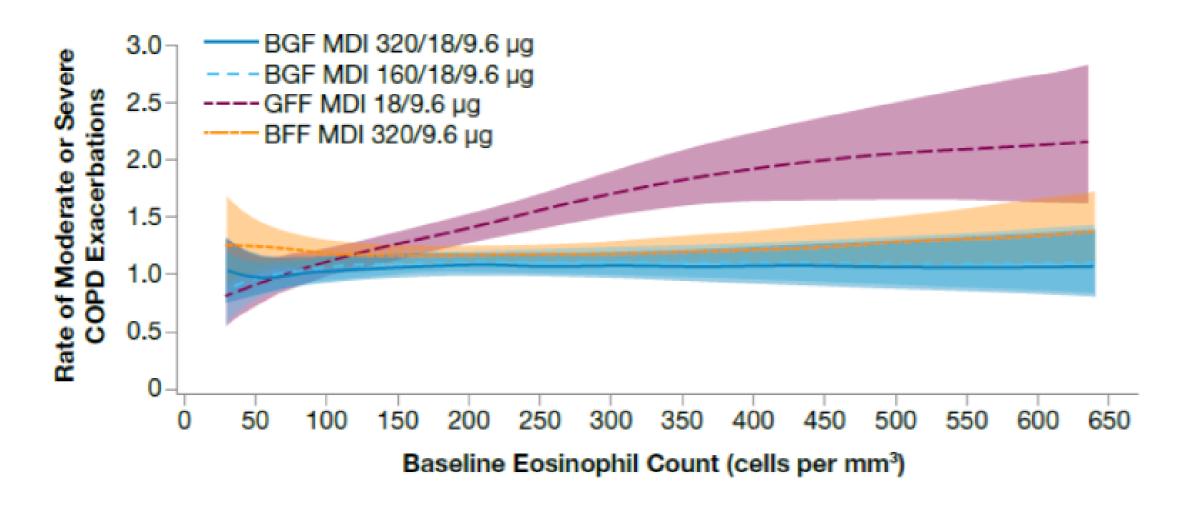
Singh D, et al. Lancet 2016 Vestbo J, et al. Lancet 2017 Papi A, et al. Lancet 2018

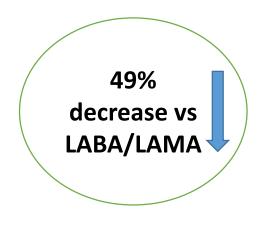
Lipson DA et al. NEJM 2018



Mortality-42% vs LABA/LAMA

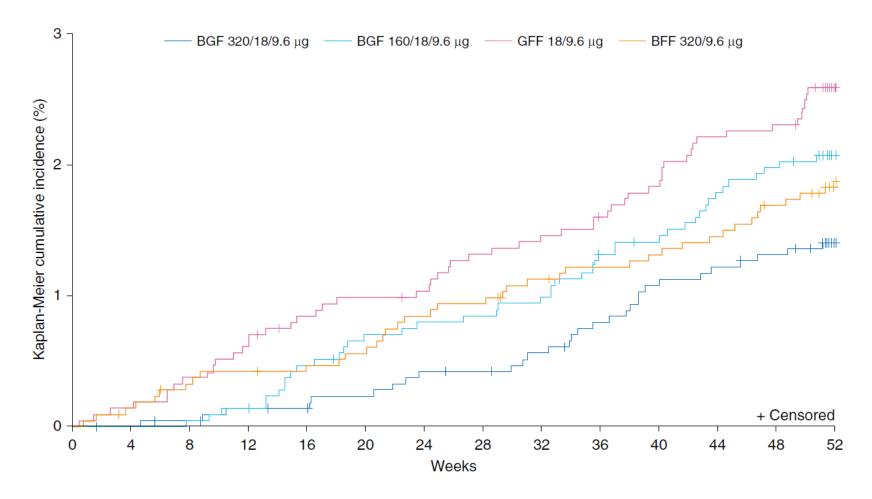
Lipson DA et al. NEJM 2018


Triple therapy decreases moderate/severe AECOPD


Rabe KF et al NEJM 2020

Decrease in AECOPD according to the number of blood eosinophils

Rabe KF et al NEJM 2020


Triple therapy BUD 320/GLY/FORM decreases the risk of death (all cause mortality) vs. LAMA/LABA

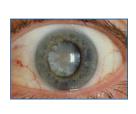
HR: 0.51; 95% CI: 0.33 -0.80; unadjusted p=0.0035

NNT = 80 vs. LAMA/LABA (95% CI: 58 to 198)

28% decrease vs. ICS/LABA HR: 0.72; 95% CI: 0.44 to 1.16; p=0.1721

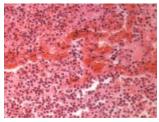
Martinez J. M et al AJRCCM 2021

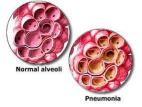
Adverse effects of ICS


Hoarseness

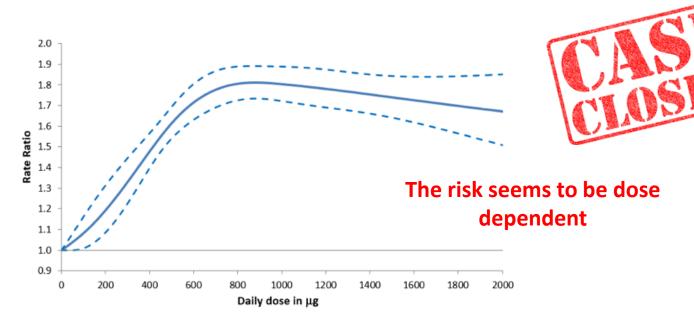
Bruises

Osteoporosis


Cataract


Mycobacterial infection

Pneumonia



Inhaled Corticosteroids Cause Pneumonia . . . or Do They? Woodhead M, AJRCCM 2007 (Editorial)

Suissa S et al Thorax 2013

Rik factors for pneumonia in COPD patients receiving ICS

- Current smokers
- ≥ 55 years of age
- Frequent exacerbations
- Previous history of pneumonia
- BMI<25kg/m²
- Severe dyspnea (mMRC)
- Severe airway obstruction

Factors to Consider when Initiating ICS Treatment

Figure 3.1

Factors to consider when adding ICS to long-acting bronchodilators:

(note the scenario is different when considering ICS withdrawal)

STRONGLY FAVORS USE

History of hospitalization(s) for exacerbations of COPD#

≥ 2 moderate exacerbations of COPD per year#

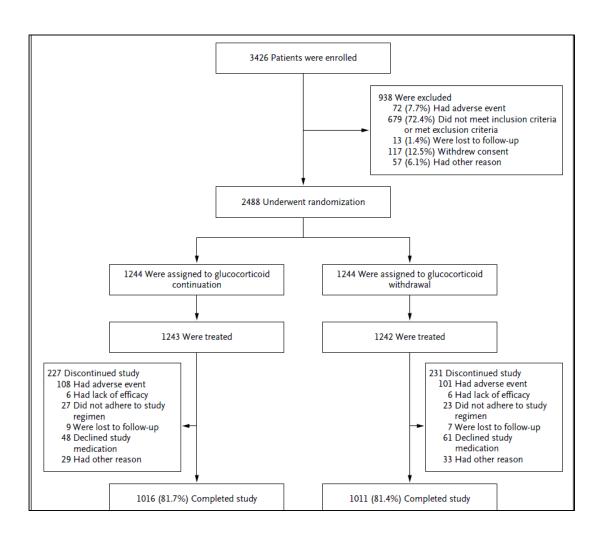
Blood eosinophils ≥ 300 cells/µL

History of, or concomitant asthma

FAVORS USE

1 moderate exacerbation of COPD per year#

Blood eosinophils 100 to < 300 cells/ μ L

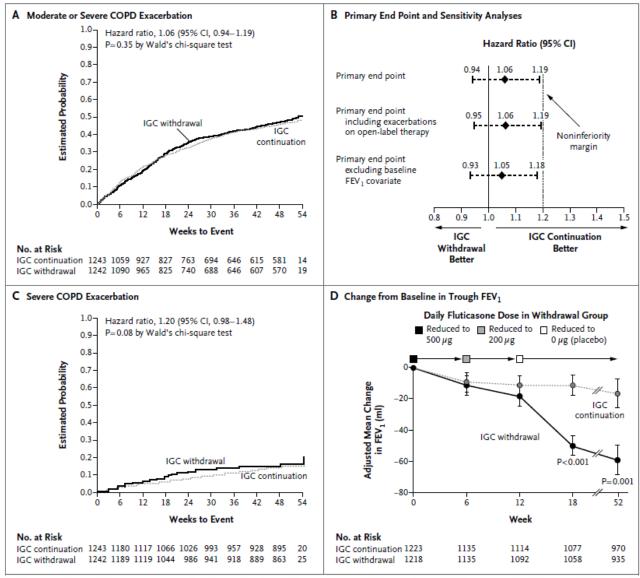

AGAINST USE

Repeated pneumonia events

Blood eosinophils < 100 cells/µL

History of mycobacterial infection

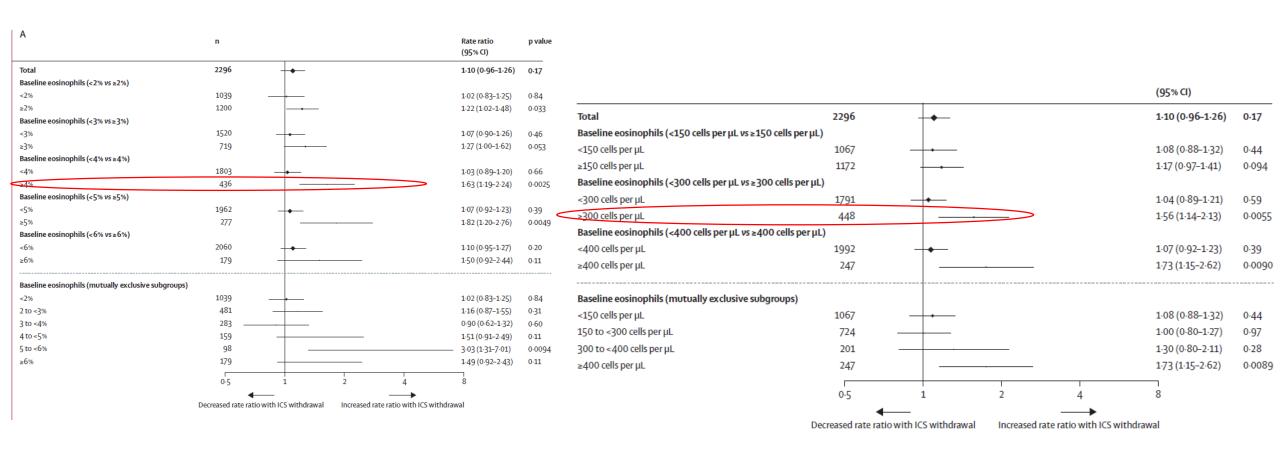
Can we discontinue the use of ICS?


Inclusion criteria

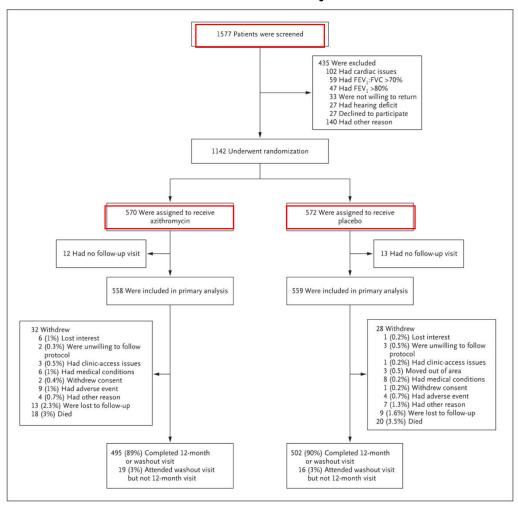
- Outpatients of either sex
- aged ≥ 40 years
- diagnosis of COPD (post bronchodilator FEV1< 50% of predicted (and FEV1 / FVC < 70%)
- documented history of exacerbations
- smoking history >10pys

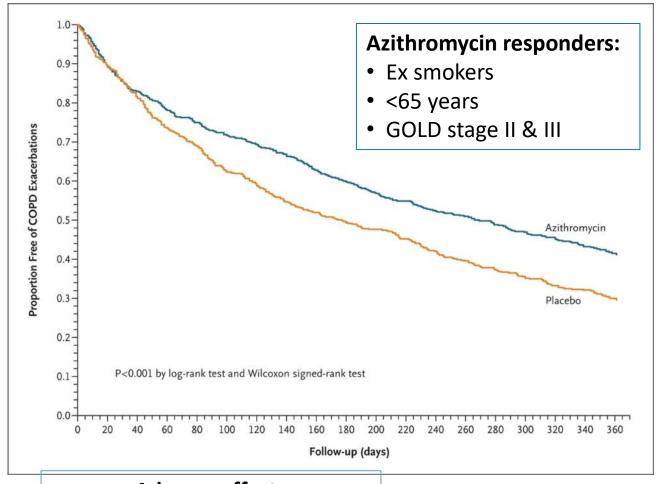
6week run in period
Treatment:
Tiotropium 18μg x 1
Salmeterol 50μg x 2
Fluticasone Propionate 500μg x 2

Magnussen H et al NEJM 2014


Can we discontinue the use of ICS?

Margnussen H et al NEJM 2014


WISDOM


Blood Eos is a potential biomarker of response to ICS in COPD

Watz et al Lancet Resp Med 2016

Azithromycin in COPD

Adverse effects Hearing problems Increase of bacterial resistance Increase of QTc

Albert RK et al. N Engl J Med 2011

The effect of macrolides in AECOPD

Respiratory Medicine (2013) xx, 1-12

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/rmed

REVIEW

Preventing COPD exacerbations with macrolides: A review and budget impact analysis

Steven Simoens a,*, Gert Laekeman a, Marc Decramer b

Received 22 June 2012; accepted 24 December 2012

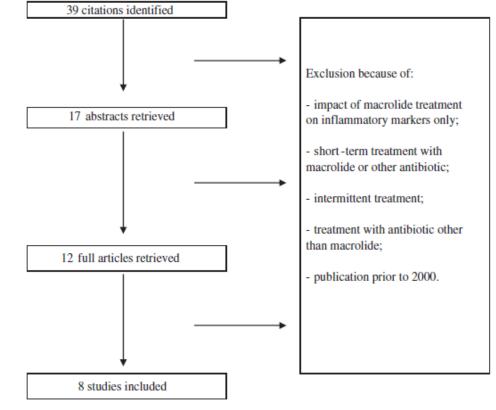
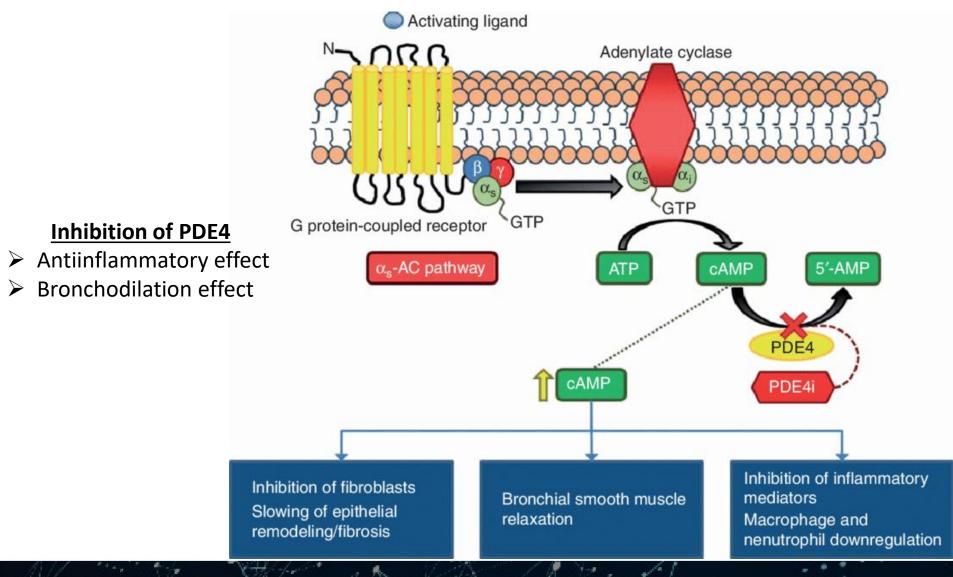


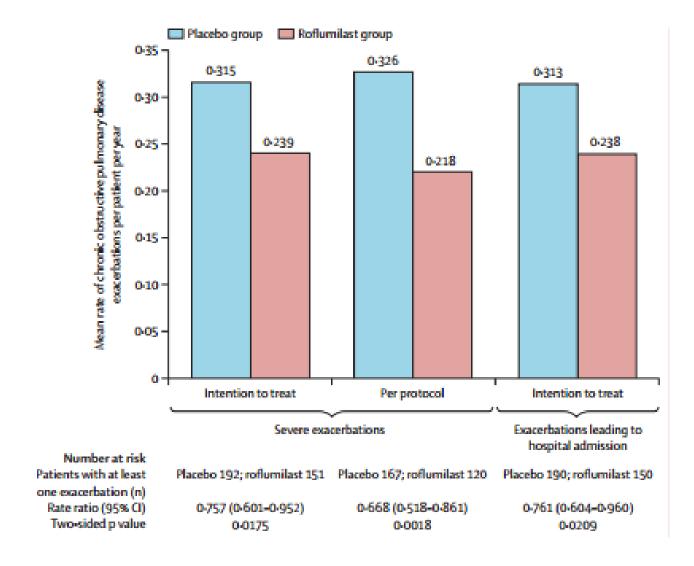
Figure 1 Flow chart of literature search.

Erythromycin (3 studies)
Azithomycin (3 studies)
Clarythomycin (2 studies)


The use of macrolides in COPD patients decreases AECOPD and the health care cost

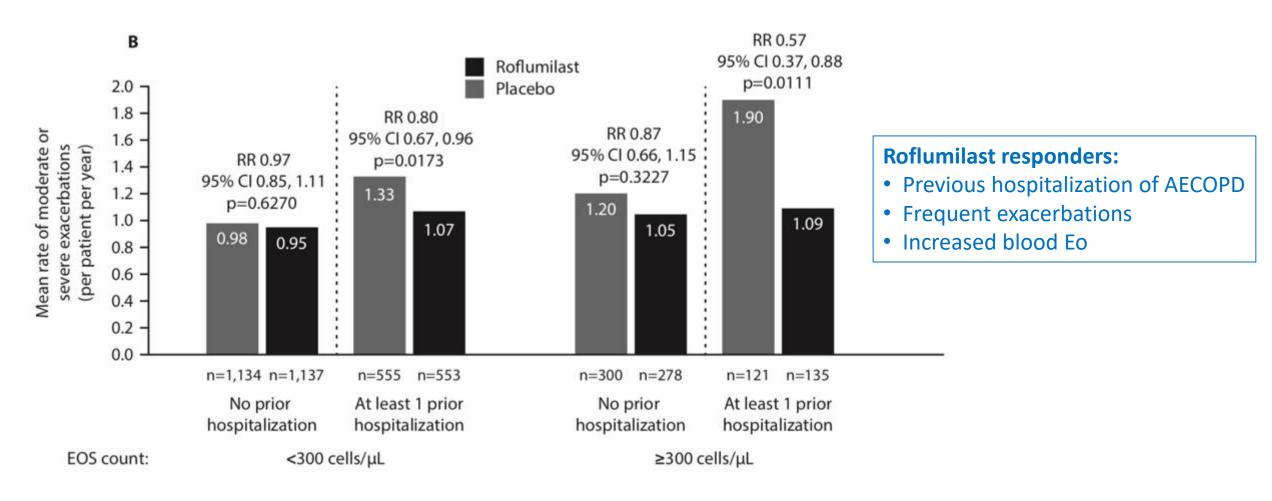
Simoens S et al Resp Med 2013

^a Research Centre for Pharmaceutical Care and Pharmacoeconomics, KU Leuven, Onderwijs en Navorsing 2, P.O. Box 521, Herestraat 49, 3000 Leuven, Belgium


^b Respiratory Division, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium

PDE4 in COPD

Role: increase of the levels of cAMP


Roflumilast decreases AECOPD in patients with chronic bronchitis

Martinez FJ et al, Lancet 2015

Roflumilast in COPD patients

Martinez FJ et al., AJRCCM 2018

Palliative care, end of life and Hospice Care in COPD

Aim: to relive symptoms and support of the patient and caregivers

Palliative Care, End of Life and Hospice Care in COPD

Table 3.9

- Opiates, neuromuscular electrical stimulation (NMES), oxygen and fans blowing air on to the face can relieve breathlessness. Evigence C)
- In malnourished patients, nutritional supplementation may improve respiratory muscle strength and overall health status (Evidence B) +Vit C, Vit E, Zinc, Selenium
- Fatigue can be improved by self-management education, pulmonary rehabilitation, nutritional support and mind-body interventions (Evidence B)

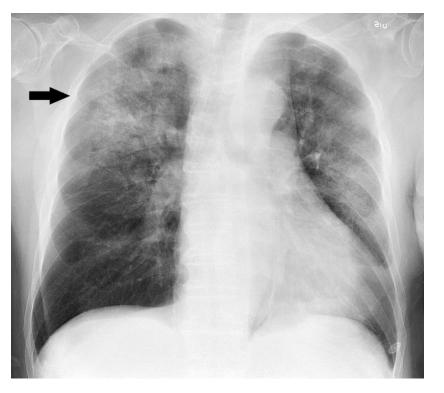
AECOPD

An exacerbation of chronic obstructive pulmonary disease (ECOPD) is defined as an event characterized by increased dyspnea and/or cough and sputum that worsens in < 14 days which may be accompanied by tachypnea and/or tachycardia and is often associated with increased local and systemic inflammation caused by infection, pollution, or other insult to the airways

GOLD 2023

- They are characterized by deterioration of symptoms and pulmonary function
- They are related to increased morbidity and mortality and high economic cost
- They accelerate disease progression
- In most cases they are related to viral and bacterial infections

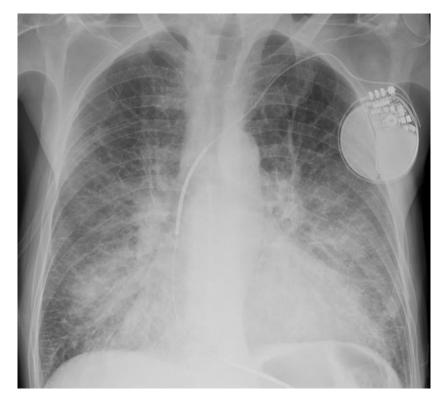
Dickson R et al Lancet 2014


Differential diagnosis includes

- ➤ Acute coronary syndrome
- > Deterioration of congestive heart failure
- ➤ Pulmonary embolism
- > Pneumonia
- > Pneumothorax
- > Overdose of sedative medication


CXR during AECOPD

➤ It is necessary for differential diagnosis


Pneumonia

Pneumothorax

Acute pulmonary edema



Main Pathogens in AECOPD

Table 2 Microbial pathogens in exacerbations of COPD

Pathogen class	Proportion of exacerbations	Specific species	Proportion of class of pathogens
Bacteria	40%–50%	Nontypeable Haemophilus	30%–50%
		influenzae	
		Streptococcus pneumoniae	15%-20%
		Moraxella catarrhalis	15%-20%
		Pseudomonas spp. and	Isolated in very severe COPD,
		Enterobacteriaceae	concomitant bronchiectasis,
			recurrent exacerbations
		Haemophilus	Isolated frequently, pathogenic
		parainfluenzae	significance undefined
		Haemophilus hemolyticus	Isolated frequently, pathogenic
			significance undefined
		Staphylococcus aureus	Isolated infrequently, pathogenic
			significance undefined
Viruses	30%-40%	Rhinovirus	40%–50%
		Parainfluenza	10%-20%
		Influenza	10%-20%
		RSV	10%-20%
		Coronavirus	10%-20%
		Adenovirus	5%-10%
Atypical	5%-10%	Chlamydia pneumoniae	90%–95%
bacteria		Mycoplasma pneumoniae	5%-10%

Severity of AECOPD

Targets during AECOPD treatment

- Improvement of arterial blood gases (Hypoxemia and hypercarbia)
- Symptom relief (dyspnea)
- Treatment of inflammation/infection
- Discovering the cause of the AECOPD

Management of Severe but not Life-threatening Exacerbations*

Table 5.4

- Assess severity of symptoms, blood gases, chest radiograph
- Administer supplemental oxygen therapy, obtain serial arterial blood gas, venous blood gas and pulse oximetry measurements
- Bronchodilators:
- Increase doses and/or frequency of short-acting bronchodilators
- Combine short-acting beta₂-agonists and anticholinergics
- Consider use of long-acting bronchodilators when patient becomes stable
- Use spacers or air-driven nebulizers when appropriate
- Consider oral corticosteroids
- Consider antibiotics (oral) when signs of bacterial infection are present
- Consider noninvasive mechanical ventilation (NIV)
- At all times:
 - Monitor fluid balance
- Consider subcutaneous heparin or low molecular weight heparin for thromboembolism prophylaxis
- Identify and treat associated conditions (e.g., heart failure, arrhythmias, pulmonary embolism etc.)

^{*}Local resources need to be considered

Considerations regarding oxygen supplementation

• Target Sat: 88-92%

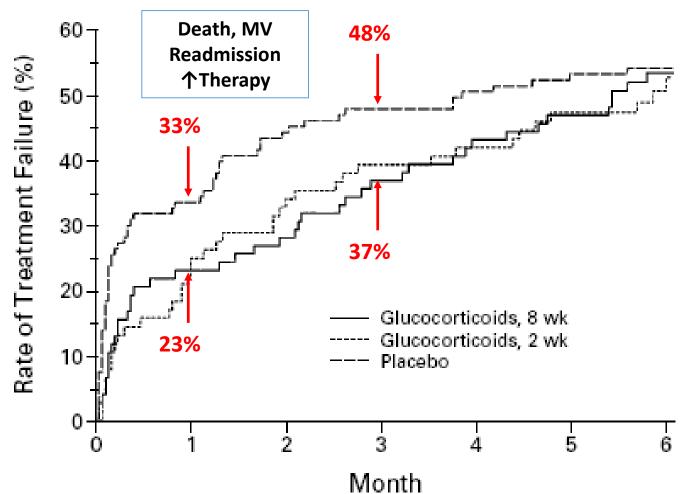
Obtain serial blood gas measurements ([HCO₃-])
 and pH can also be monitored in venous blood)

Venturi masks are important for the administration of oxygen supplementation

Bronchodilators

- Rapid onset-short acting bronchodilators
 - Salbutamol (onset 5min)
 - Ipratropium Bromide (onset 15min)
 - Salbutamol/ipratropium combination
- Use spacers or nebulizers (similar efficacy)
 - In the ER usually nebulizers with oxygen!!!!

Methylxanthines (theophiline, aminophylline) are not recommended due to limited effectiveness and many adverse events


Administer every hour or more frequently according to the patients needs

Corticosteroids

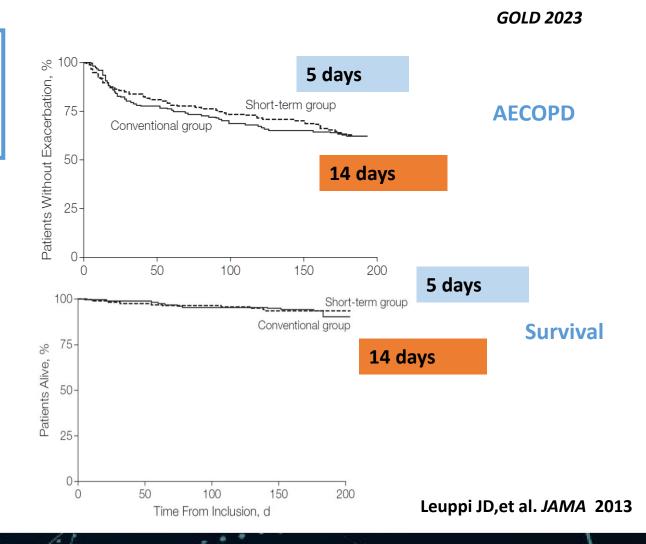
EFFECT OF SYSTEMIC GLUCOCORTICOIDS ON EXACERBATIONS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

DENNIS E. NIEWOEHNER, M.D., MARCIA L. ERBLAND, M.D., ROBERT H. DEUPREE, PH.D., DOROTHEA COLLINS, Sc.D., NICHOLAS J. GROSS, M.D., PH.D., RICHARD W. LIGHT, M.D., PAULA ANDERSON, M.D., AND NANCY A. MORGAN, R.PH., M.B.A.,

FOR THE DEPARTMENT OF VETERANS AFFAIRS COOPERATIVE STUDY GROUP*

Systemic Corticosteroids when used for the treatment of AECOPD decrease significantly the possibility of readmission for ARCOPD during the following 30 days

Criner GJ, et al. Chest 2015

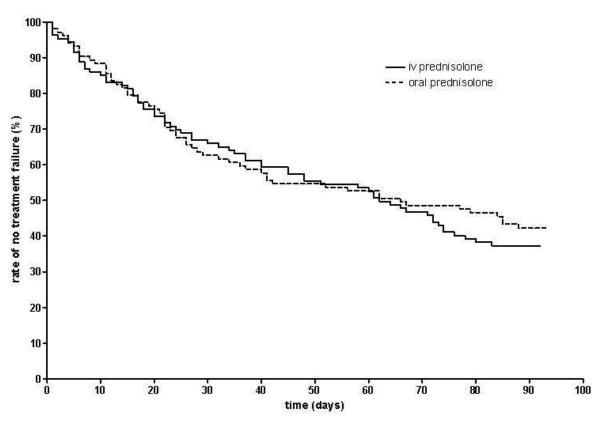

Corticosteroids

Per os or IV (40mg prednisolone/day for 5 days (Evidence A)

Short-term vs Conventional Glucocorticoid Therapy in Acute Exacerbations of Chronic Obstructive Pulmonary Disease The REDUCE Randomized Clinical Trial

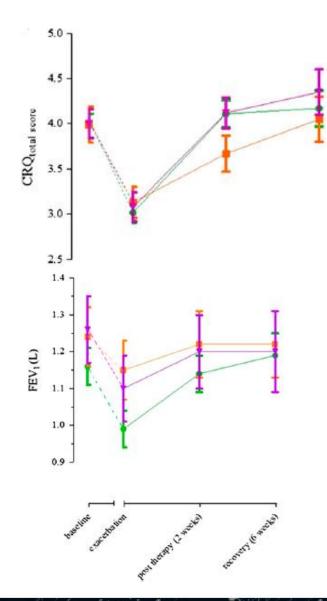
314 patients with AECOPD

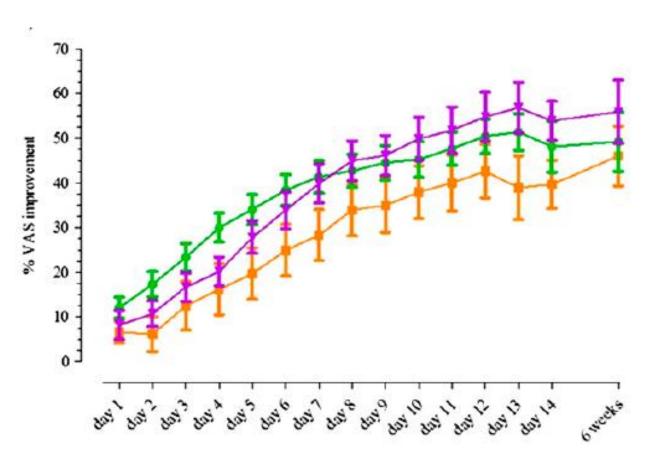
- 40 mg prednisone (iv on day 1 and then per os)
- Duration of treatment 5 days vs 14 days
- Primary outcome:
 - Time to next exacerbation in the next 180 days



Corticosteroids, IV ή per os;

Oral or IV Prednisolone in the Treatment of COPD Exacerbations *: A Randomized, Controlled, Double-blind Study


Ynze P. de Jong, Steven M. Uil, Hans P. Grotjohan, Dirkje S. Postma, Huib A.M. Kerstjens and Jan W.K. van den Berg



de Jong YP et al, Chest 2007

Do all exacerbations need corticosteroids?

Baffadel M et al. AJRCCM 2012

Biomarker positive given

Biomarker negative given

Biomarker negative given

prednisolone

prednisolone

placebo

Antibiotics (per os or IV) when sings of bacterial infection are present

GOLD 2023

Detection of bacterial causes during AECOPD

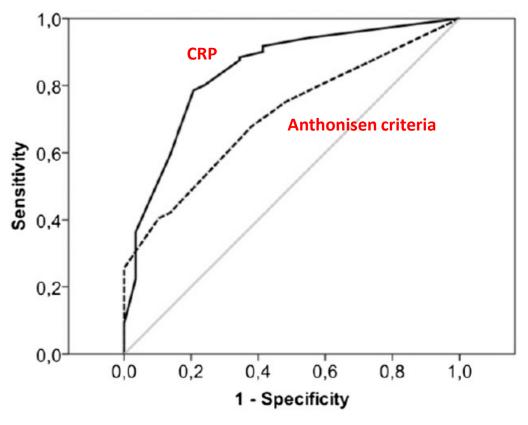
30% in sputum cultures

50% in bronchial secretion cultures

70% in bronchial secretion in patients who require mechanical ventilation

ANTHONISEN Criteria (Ann Intern Med 1987)

- (α) increased dyspnea
- (β) increased sputum volume
- (γ) purulent sputum


Anthonisen NR Ann Int Med 1987

- (1) 3 criteria met (Type I Anthonisen)[Evidence B]
- (2) 2 criteria met one of them is purulent sputum(Type II Anthonisen) [Evidence C]
- (3) Patient on mechanical ventilation (NIV ή MV)[Evidence B]

Sapey E et al Thorax 2005

The use of biomarkers during AECOPD

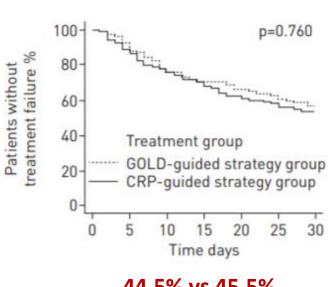
CRP and procalcitonin: recognition of bacterial AECOPD and requirement of antibiotics

p=0.033

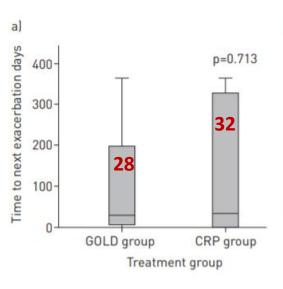
Anthonisen criteria

AUC 0.708 (95% CI, 0.616-0.801)

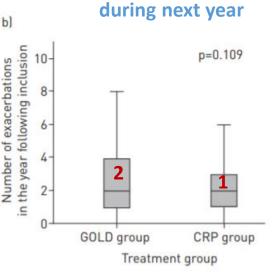
CRP (cut off >40mg/L)

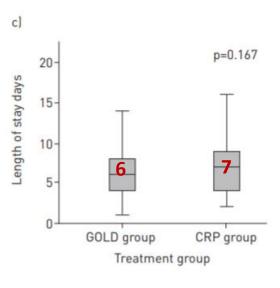

AUC 0.842 (95% CI 0.760-0.924)

Miravitlles M et al Chest 2013


The use of CRP for prescribing antibiotics

220 patients hospitalized for AECOPD

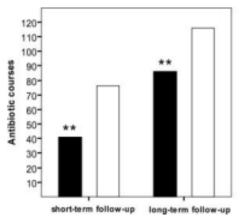




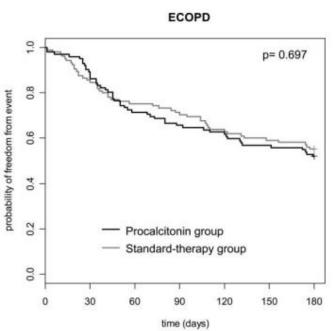
Number of AECOPD

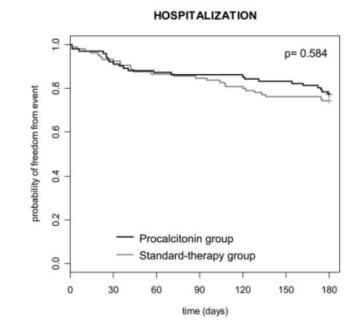
Hospital stay

44.5% vs 45.5%


Prescription of antibiotics

CRP vs GOLD: 31.7% vs 46.2%, p=0.028


Prins HJ et al ERJ 2019


Procalcitonin

A marker of bacterial infection

The use of antibiotics was lower in patients treated according to PCT

■ Procalcitonin group
 □ Standard-therapy group

**P< 0.001

Stoltz D et al Chest 2007

Risk factors for P. aeruginosa

Table 1. Risk factors for *Pseudomonas aeruginosa* infection in chronic obstructive pulmonary disease

Reference	Risk factors		
Allegra et al. [27]	FEV ₁ <35%		
Eller et al. [25]	FEV ₁ <35%		
	Pretreatment with antibiotics		
Miravitlles et al. [26]	FEV ₁ <50% ◆		
Lode et al. [28]	FEV ₁ <35%		
	Use of systemic corticosteroids		
	Antibiotics in the previous 3 months		
Monsó et al. [29]	Low FEV ₁		
	Use of oral corticosteroids		
	Antibiotics in the previous 3 months		
	Protective effect of anti-influenza vaccine		
García-Vidal	Use of systemic corticosteroids		
et al. [30]	Poor BODE index		
	Hospital admissions in the previous year		
	Previous isolation of P. aeruginosa		
Gallego et al. [31]	Presence and extension of bronchiectasis		
	Previous exposure to antibiotics		

Patients with

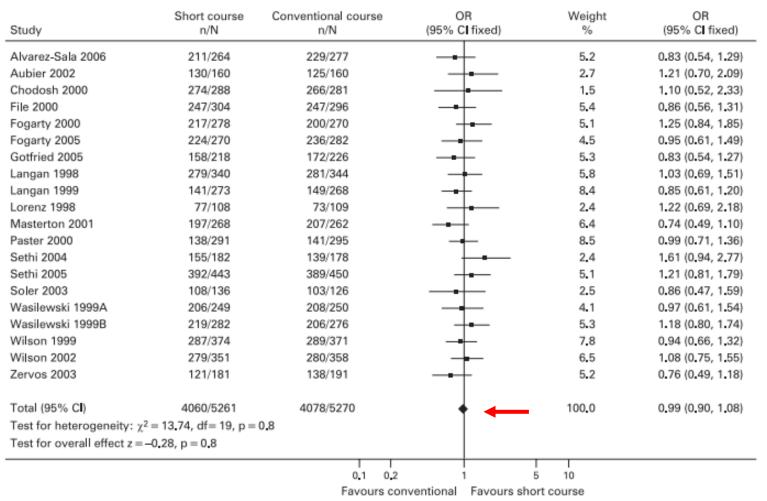
- ✓ Severe and very severe obstruction
- ✓ Recent use of antibiotics
- ✓ Recent use of systemic CS
- ✓ Previous detection of P aeruginosa

Miravitlles M et al Cur Opin 2015

Antibiotic choices during AECOPD

The choice of the antibiotic should be based on the local bacterial resistance pattern.

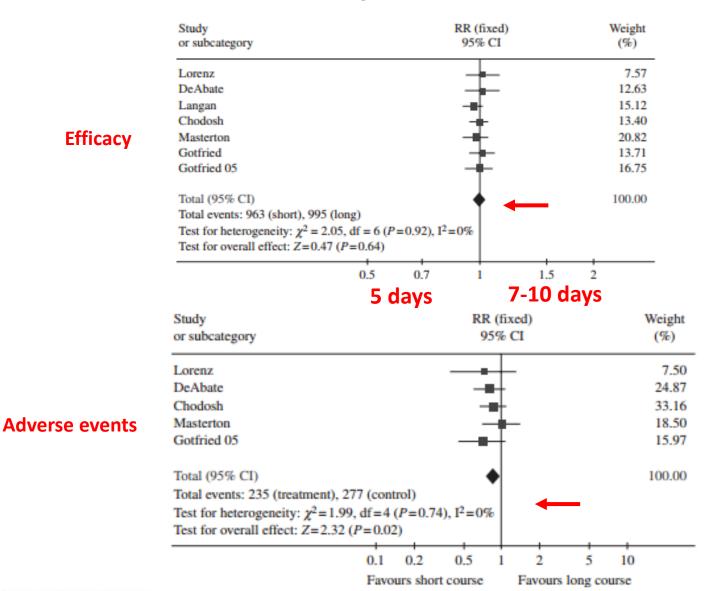
Initial empirical treatment usually includes:


- aminopenicillin with clavulanic acid,
- macrolide, tetracycline
- quinolone (in selected patients)

Antibiotic treatment effective against Gram – bacteria should be administered in patients with:

- frequent exacerbations
- severe airflow obstruction
- exacerbations requiring mechanical ventilation
- Previous detection of Gram bacteria or resistant pathogens

Duration of antibiotic treatment during AECOPD


 \leq 5 days > 5 days

Moussaoui RE et al. Thorax 2008

Duration of antibiotic treatment during AECOPD

Systematic review

Falagas ME et al J Antim Chem 2008

NIV

Indications:

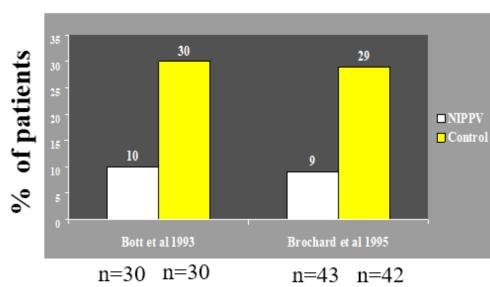
- ✓ Severe dyspnea with clinical signs suggestive of respiratory muscle fatigue and/or increased work of breathing (use of respiratory accessory muscles, paradoxical motion of the abdomen or retraction of the intercostal spaces)
- ✓ Respiratory acidosis ($PCO_2 > 6kPa$ or 45 mmHg and pH ≤ 7.35)
- ✓ Persistent hypoxemia despite supplemental oxygen therapy

Contraindications

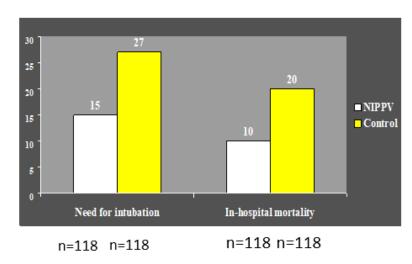
- ✓ Respiratory or cardiac arrest
- ✓ Hemodynamic instability (hypotension, arrhythmia, acute coronary infraction)
- ✓ Inability of the patient to co-operate or refusal
- ✓ Increased risk of aspiration
- ✓ Increased respiratory secretions
- ✓ Recent facial or upper abdomen surgery or burns
- ✓ Severe hypoxemia in patients who do not cooperate with NIV

NIV should be the initial mode of ventilation to treat acute respiratory failure in patients hospitalized for acute exacerbations of COPD

Caution!!!!


- > Severe acidosis is not a contraindication for NIV if there is a possibility for immediate intubation in case of failure
- > The use of NIV should not delay intubation if it is necessary

NIV in AECOPD


Intubation

Stramer et al 1995 NIPPV Scontrol Read of the second of

Mortality

Plant PK, et al. Lancet 2000

Nasal High Flow

- High-flow nasal therapy (HFNT) delivers heated and humidified air-oxygen blends via special devices) at rates up to 60 L/min
- It has been associated with decreased respiratory rate and effort, decreased work of breathing, improved gas exchange, improve lung volume and dynamic compliance, transpulmonary pressures and homogeneity
- It improves oxygenation and ventilation, decrease hypercarbia and improve HRQoL in patients with acute hypercapnia during an acute exacerbation, and also in selected patients with stable hypercapnic COPD
- A trial of NIV prior to use of HFNT in patients with COPD and hypercapnic ARF is recommended

Pantazopoulos I et al COPD 2020

Management of AECOPD

Always

- Close follow up of fluid uptakes and diuresis
- LMWH Sc
- Diagnose and treat comorbidities (especially cardiovascular)

Severe AECOPD: Admission to the ICU

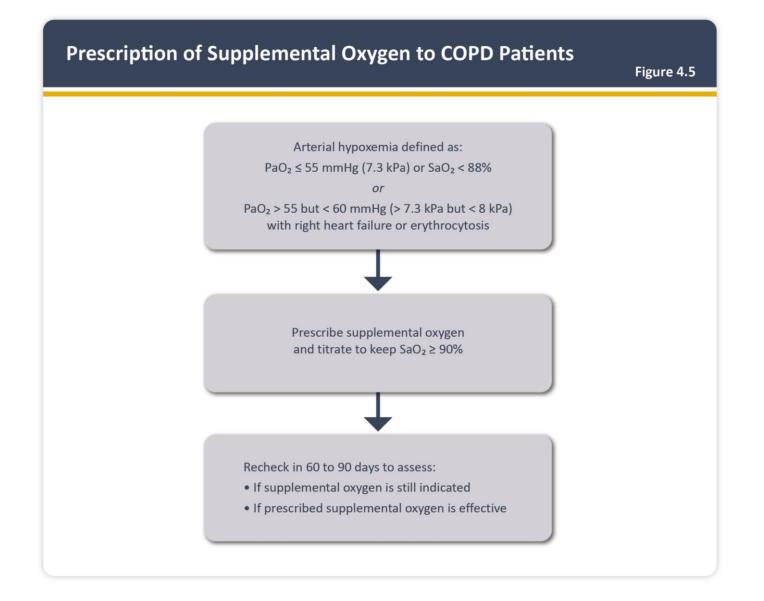
Indications for Respiratory or Medical Intensive Care Unit Admission*

Table 5.6

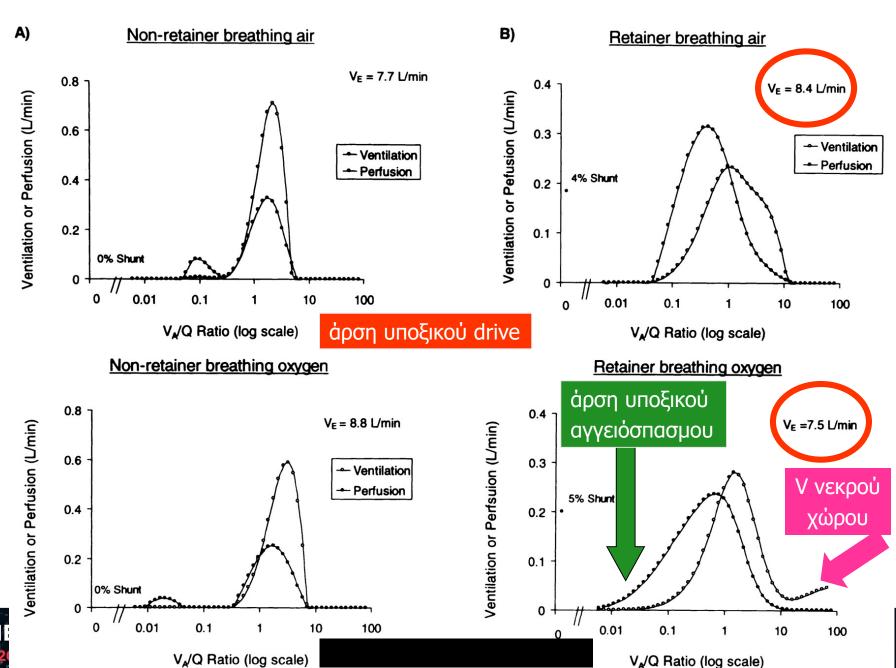
- Severe dyspnea that responds inadequately to initial emergency therapy
- Changes in mental status (confusion, lethargy, coma)
- Persistent or worsening hypoxemia ($PaO_2 < 5.3$ kPa or 40 mmHg) and/or severe/worsening respiratory acidosis (pH < 7.25) despite supplemental oxygen and noninvasive ventilation
- Need for invasive mechanical ventilation
- Hemodynamic instability need for vasopressors

^{*}Local resources need to be considered.

When we treat stable and exacerbating COPD


We should

Take into account the patient's phenotype (personalized therapy)


- Target not only symptoms but also airway and systemic inflammation
- All (pharmacologic and non pharmacologic) therapeutic interventions should be offered in each COPD patient to improve HRQoL and to increase survival

Back up slide

Μηχανισμός υπερκαπνίας λόγω Ο₂ στη ΧΑΠ


COPD@ATHI Oct 4th and 11th 2

Respiratory Medicine

Adverse events of Roflumilast

- Diarrhea
- Nausea
- Loss of appetite
- Weight loss
- Abdominal pain
- Sleep disorders
- Headache

Usually in the beginning of treatment and decrease with time

Chow L et al J Hosp Med 2015

Typical initial settings for NIV in AECOPD

Mode: Spontaneous (pressure support)/timed

EPAP: $4-5 \text{ cm H}_2\text{O}$

IPAP: 15 cm H₂O (to be increased as tolerated to 20-30 cmH₂O)

with 20 cm H_2O if pH < 7.25

Triggers: Maximum sensitivity

Back up rate: 15 breaths/min

Back up I:E ratio: 1:2

In case of not improvement

Increase IPAP

Change of mask (Air leak)

Increase of EPAP

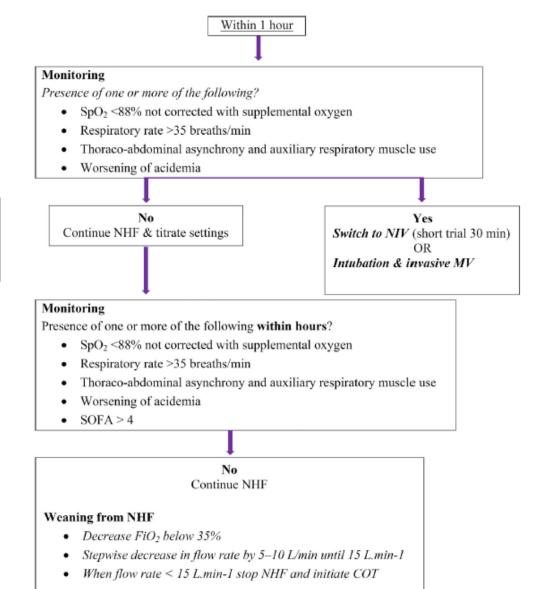
NIV in AECOPD

Check ventilator

- Check machine and circuit
- Check expiration valve

Inform the patient

- What will happened and why
- Oxygen delivery through the circuit or through the mask


Choose the right mask

- Size
- Full-face mask is preferred compared to nasal mask
- Removal of artificial dentures
- Claustrophobia: it decreases as blood gases improve

CM Roberts et al Clin Med 2008

SUGGESTED ALGORITHM FOR NHF USE IN ACUTE HYPERCARBIC EXACERBATION OF COPD Acute Exacerbation of COPD & Acute Hypercapnic Respiratory Failure ABCDE approach Criteria for immediate or imminent intubation? Yes Intubation & invasive MV Oxygen, neb, steroids, antibiotics NHF for improving pre-oxygenation and peri-laryngoscopy oxygenation Indications for NIV or NHF? FiO2: 100% Flow rate: 60 L.min-1 Temperature: 37 °C No Conservative treatment Yes pH 7,25 - 7,35 pH < 7.25NHF initiation NIV* NIV* Flow rate: 50-60 L/min FiO2: Titrate to achieve an SpO2 88-92 Temperature: 37 °C If poor tolerance of NIV Switch to NHF If nebulizer is connected to the NHF: Place the vibrating mesh nebulizer before or after the humidification chamber Place jet nebulizer immediately before to nasal prongs

Use a flow rate of 30-60 L.min-1 during nebulization depending on the patient's inspiratory

Pantazopoulos I et al COPD 2020